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We have T experimental units (indexed by t).

The experimenter has a treatment they would like to compare to control.
Each t has deterministic potential outcomes under treatment and control:

(yt(l)vyt(o))

We want to know the average treatment effect:

Z yt(1) — y:(0)
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Background: standard (non-adaptive) experiments

1. Decide treatment probability @

2. Begin the
Fo

How do we set p?

3. Estimate T with the Horvitz-Thompson estimator:

1 Z, 1-— Zt) | |
Fp—— Y, [ == e unbiased estimator
RIC e
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How do we set p?

This work: minimize variance.
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Neyman Variance: the optimal allocation

Forany fixed P: T Var(®) = S@12( £ = 1) + 802 —— — 1) + 205(1)5(0)

Can we get close
with adaptivity? (2

Then, set

and get variance [T - Vary = 2(1 + p)S(1)S(0) LY i vO)m (1)
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Some Aspects of the
Sequential Designs of
Experiments [Robbins 1952]

Suppose we are dealing
with two normally distributed populations with unknown means
p1, pe and variances o3, o2, and that we wish to estimate the value of
the difference uy—pe. In order to concentrate on the point at issue
we shall suppose that the total sample size, #, is fixed. There remains
the question of how the 7z observations are to be divided between the
two populations. If #, % denote the means of samples of sizes 71, 7.
from the two populations, then % — %, is an unbiased estimator of
u1— g, With variance o2 = (62 /n;) + (62/n,). For fixed n =n14ns, d%isa
minimum when 7,/7n, =01/0,. If the latter ratio is known in advance,
all is well. If this ratio is not known, but if the sampling can be done
in two stages, then it would be reasonable to draw preliminary
samples of some size m from each of the two populations and to use
the values so obtained to estimate o1/02; the remainder of the » —2m
observations could then be allocated to the two populations in ac-
cordance with the sample estimate of o1/02. The question then be-
comes, what is the best choice for m? If m is small, no accurate esti-
mate of ¢1/0; can be made. If m is large, then the remaining #—2m
observations may be too few to permit full utilization of the approxi-
mate knowledge of o1/02. (This kind of dilemma is characteristic of
all sequential design problems.) More generally, we could consider
schemes in which the observations are made one by one, with the de-
cision as to which population each observation should come from
being allowed to depend on all the previous observations; the total
sample size # could be fixed or could be a random variable dependent
on the observations.
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Adaptive experimental setup

1. Begin the experiment.
Forunitst=1, 2, ... T:
Determine treatment probability Pt

How do we set P,? S

A 1 Zt 1 — Zt unbiased estimator
= — Y,
=T 2 t(Pt+1—Pt)

2. Estimate
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With adaptivity, T - Var(f) = % 3 <y,5(1)2 ‘E F] + 14,0 E l = D 1 > (we(1) — w(0))?

te[T|

yt(1)2

Let’s notate ft(p) =
D I—p

Then, Neyman Regret is defined as

Rr =) fi(P) e > fip)

te[T] te[T]
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RT—thPt . mm th

’

te[T]

} e c[T]

With this definition, minimizing Neyman regret also minimizes variance:

1

4, [RT]

This turns a statistical problem into an algorithmic problem:

, [RT] — O(T)
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Algorithm 1: CLIP-OGD

Input: Step size n and decay parameter «

Initialize Py < 1/2 and Gy < 0

fort=1...Tdo

Set projection parameter §; = (1/2) - t—1/

Compute new treatment probability P, « Ps, (Pi—1 — 1 - G¢—1)
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Observe outcome Y; = 1[Z; = 1]y:(1) + 1[Z: = 0]y:(0)

Construct gradient estimator G; = Yt2 (— I[ZI%,: 1] T %1[ f}f?;)

end




Our Algorithm: -OGD

Algorithm 1: CLIP-OGD

Input: Step size n and decay parameter «

Initialize Py < 1/2 and Gy < 0

fort=1...Tdo

Set projection parameter|d; = (1/2) - t—1/

Compute new treatment probability P, « Ps, (Pi—1 — 1 - G¢—1)

Sample treatment assignment Z; as 1 with probability P; and 0 with probability 1 — P,
Observe outcome Y; = 1[Z; = 1]y:(1) + 1[Z: = 0]y:(0)

Construct gradient estimator G; = Yt2 (— I[ZI%,: 1] T %1[ f}f?;)

end




Our Algorithm: Clip-OGD

Algorithm 1: CLIP-OGD

Input: Step size n and decay parameter «

Initialize Py < 1/2 and Gy < 0

fort=1...Tdo

Set projection parameter §; = (1/2) -t~/

Compute new treatment probability P, « Ps, (P—1 — 1 - Gi—1)

Sample treatment assignment Z; as 1 with probability P; and 0 with probability 1 — P,
Observe outcome Y; = 1[Z; = 1]y:(1) + 1[Z: = 0]y:(0)

Construct gradient estimator G; = Y;z (— 1[215; 1] T %1[ ftpf?;)

end




Our Algorithm: Clip-OGD

Algorithm 1: CLIP-OGD

Input: Step size n and decay parameter «

Initialize Py < 1/2 and Gy < 0

fort=1...Tdo

Set projection parameter §; = (1/2) -t~/

Compute new treatment probability P, « Ps, (P—1 — 1 - Gi—1)

Sample treatment assignment Z; as 1 with probability P; and 0 with probability 1 — P,
Observe outcome Y; = 1[Z; = 1]y:(1) + 1[Z: = 0]y:(0)

Construct gradient estimator G; = Y;z (— 1[215; 1] T %1[ ftpf?;)

end




Our Algorithm: Clip-OGD

Algorithm 1: CLIP-OGD

Input: Step size n and decay parameter «

Initialize Py < 1/2 and Gy < 0

fort=1...Tdo

Set projection parameter §; = (1/2) -t~/

Compute new treatment probability P, « Ps, (P—1 — 1 - Gi—1)

Sample treatment assignment Z; as 1 with probability P; and 0 with probability 1 — P,
Observe outcome Y; = 1[Z; = 1]y:(1) + 1[Z: = 0]y:(0)

Construct gradient estimator G; = Y2( [Zt 21t (1[ZtPt ;2)

end




Main Result: Neyman Regret of Clip-OGD



Main Result: Neyman Regret of Clip-OGD

Assume: dc < (C'such that

1/4

1/2
1. Forté€ {07 1} S (;tez[;] ?Jt(i)2) < (;tez[;]yt(iyl) <C

2. Cosine similarity bounded below: p > —(1 — ¢)



Main Result: Neyman Regret of Clip-OGD

Assume: dc < (C'such that

1/4

1/2
1. Forté€ {07 1} S (;tez[;] yt(i)2> < (;tez[;]yt(iyl) <C

2. Cosine similarity bounded below: p > —(1 — ¢)

Set:n =,/1/T, a =/5log(T)



Main Result: Neyman Regret of Clip-OGD

Assume: dc < (C'such that

1/4

1/2
1. Forté€ {07 1} S (;tez[;] yt(i)2> < (;tez[;]yt(i)4) <C

2. Cosine similarity bounded below: p > —(1 — ¢)

Set:n =,/1/T, a =./5log(T)

Clip-OGD approaches the Neyman (optimal) variance at a

rate of T -
. [RT] — O(ﬁ)




Main Result: Neyman Regret of Clip-OGD

Assume: dc < (C'such that

1/4

1/2
1. Forté€ {07 1} S (;tez[;] yt(i)2> < (;tez[;]yt(i)4) <C

2. Cosine similarity bounded below: p > —(1 — ¢)

Set:n =,/1/T, a =/5log(T)

Clip-OGD approaches the Neyman (optimal) variance at a

rate of T =
. [RT] — O(ﬁ)




Variance Estimation: asymptotically valid confidence intervals



Variance Estimation: asymptotically valid confidence intervals

(Nonstandard) variance estimation approach:



Variance Estimation: asymptotically valid confidence intervals

(Nonstandard) variance estimation approach:
T - Vaiipogp — 1 - Vn



Variance Estimation: asymptotically valid confidence intervals

(Nonstandard) variance estimation approach:
T - Vaiipogp — 1 -V



Variance Estimation: asymptotically valid confidence intervals

(Nonstandard) variance estimation approach:
T - Vaiipogp — 1 - Vn
= 2(1+4+ p)S15
< 45150



Variance Estimation: asymptotically valid confidence intervals

(Nonstandard) variance estimation approach:
T - Vaiipogp — 1 - Vn
= 2(1+4+ p)S15
<4515
27T-VB



Variance Estimation: asymptotically valid confidence intervals

(Nonstandard) variance estimation approach:
T - Vaiip-ogp = 1+ Vi
= 2(1+ p)S150
<4515
2T7.VB
Chebyshev-style confidence intervals:

lim inf Pr [TE%ioz_l/Q\/v\B] >1—«

T'— 00



Variance Estimation: asymptotically valid confidence intervals

(Nonstandard) variance estimation approach:
T - Vaiip-ogp = 1+ Vi
= 2(1+ p)S150
<4515
2T7.VB
Chebyshev-style confidence intervals:

lim inf Pr [TE%ioz_l/Q\/v\B] >1—«

T'— 00



Numerical Results: Microfinance simulation (ron & Mckenzie 2016)



Numerical Results: Microfinance simulation (cron & Mmckenzie 2016)

Treatment: provide a new insurance product
Outcome: amount of money invested in equipment

We impute missing potential outcomes & extend size from T=2961 to 14445



Numerical Results: Microfinance simulation (cron & Mmckenzie 2016)

Treatment: provide a new insurance product
Outcome: amount of money invested in equipment

We impute missing potential outcomes & extend size from T=2961 to 17445

== = Bernoulli
= = Neyman
m— ETC

= ClipOGD

0 2500 5000 7500 10000 12500 15000 17500
Number of Rounds (T)



Numerical Results: Microfinance simulation (cron & Mmckenzie 2016)

Treatment: provide a new insurance product
Outcome: amount of money invested in equipment

We impute missing potential outcomes & extend size from T=2961 to 17445

== = Bernoulli
= = Neyman
m— ETC

= ClipOGD

0 2500 5000 7500 10000 12500 15000 17500
Number of Rounds (T)



Numerical Results: Microfinance simulation (cron & Mmckenzie 2016)

Treatment: provide a new insurance product

Outcome: amount of money invested in equipment

We impute missing potential outcomes & extend size from T=2961 to 17445

=
+— 0.90

©
> 0.85

eT:
© o o o o
2] [«)] ~ ~ [ee]
o [9] o [9] o

Normalized Varianc
o
w

== = Bernoulli
= = Neyman

— ClipOGD
—— i BT I
el el I —

0

2500 5000 7500 10000 12500 15000 17500

Number of Rounds (T)

=
= 0.90

©
> 0.85

eT:
© o o o o
[e)] [o)] ~ ~ [e0]
o wu o w o

Normalized Varianc
o
[9,]

N—ﬂ——————_

== = Bernoulli
== = Neyman

= ClipOGD

0

2500

5000 7500 10000 12500 15000

Number of Rounds (T)

17500



Additional Results: Other Designs?

O(T) lower bound on explore-then-commit design
Impossibility result/ tradeoff for outcome and Neyman regret
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Impossibility result: Neyman Regret and Outcome Regret

outcome 1 : .
et RF™™ =7 > Y- min 3 Yi(0).
te[T] T telT)

Suppose algorithm A for sequential allocation is no-outcome-regret:

E[R%utcome] — O(TQ) for q € (O, 1)
Then A must suffer supralinear Neyman regret:

E[R™™™] > (T)

No math here



Any allocation which prioritizes outcomes within the experiment
will worsen the information gained from the experiment.

Proof sketch:

definition of outcome regret implies

which means that

which lower bounds

and therefore the Neyman regret.




