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The experimenter has a treatment they would like to compare to control.

Each t has deterministic potential outcomes under treatment and control:

We want to know the average treatment effect:
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This work: minimize variance. 
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Neyman Variance: the optimal allocation 

For any fixed    :

Then, set 

and get variance 

Second moment:

Cosine similarity:

Can we get close 
with adaptivity?
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Background: Prior work

Some Aspects of the 
Sequential Designs of 
Experiments [Robbins 1952]

Proposes a fully adaptive 
experiment…
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Adaptive experimental setup 

1. Begin the experiment. 
For units t = 1, 2, … T: 

Determine treatment probability 
Sample treatment assignment
Observe one potential outcome

2. Estimate        with the adaptive Horvitz-Thompson estimator: 

unbiased estimator

How do we set Pt?
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Neyman Regret: Neyman allocation as a benchmark 

With this definition, minimizing Neyman regret also minimizes variance:

This turns a statistical problem into an algorithmic problem:
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Minimizing Neyman Regret

Good: objective                                      is convex
Can we use online gradient descent?

Less good: fundamental problem of causal inference
only observe                     , not

Challenging: gradients                   blow up at the boundary

can borrow 
techniques 
from online 
convex opt

can construct 
an unbiased 
estimator for 
the gradient

need to clip 
gradient 
updates
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Our Algorithm: Clip-OGD
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Assume:                    such that

1. For                     ,

2. Cosine similarity bounded below:

Set: 𝜂 = 1/𝑇 , 𝛼 = 5 log 𝑇

Clip-OGD approaches the Neyman (optimal) variance at a
rate of 𝑻:

Main Result: Neyman Regret of Clip-OGD

(hides subpolynomial factors)
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Numerical Results: Microfinance simulation (Groh & McKenzie 2016)

Treatment: provide a new insurance product 
Outcome: amount of money invested in equipment

We impute missing potential outcomes & extend size from T=2961 to 17445

With first 100 outcomes corrupted



Additional Results: Other Designs? 

O(T) lower bound on explore-then-commit design
Impossibility result/ tradeoff for outcome and Neyman regret
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Impossibility result: Neyman Regret and Outcome Regret

Let                                                                                . 

Suppose algorithm A for sequential allocation is no-outcome-regret:                                                            

for 

Then A must suffer supralinear Neyman regret:                     

No math here 



Any allocation which prioritizes outcomes within the experiment
will worsen the information gained from the experiment.

Proof sketch:

definition of outcome regret implies

which means that  

which lower bounds

and therefore the  Neyman regret.


