Clip-OGD: An Experimental Design for Adaptive Neyman Allocation *to appear, NeurIPS 2023*

Chris Harshaw MIT

Jessica Dai U.C. Berkeley

Algorithm Design for Causal Inference, INFORMS 2023 Paula Gradu

U.C. Berkeley

Experimenters

Treatment & control

Experimental units

E

Treatment assignment

Observe outcomes

Experimenters and treatments, as before

Sequential treatment assignments and outcome observations

We have *T* experimental units (indexed by *t*).

We have *T* experimental units (indexed by *t*).

The experimenter has a **treatment** they would like to compare to **control.**

We have *T* experimental units (indexed by *t*).

The experimenter has a treatment they would like to compare to control.

Each *t* has deterministic potential outcomes under treatment and control: $(y_t(1), y_t(0))$

We have *T* experimental units (indexed by *t*).

The experimenter has a treatment they would like to compare to control.

Each *t* has deterministic potential outcomes under treatment and control:

 $(y_t(1), y_t(0))$

We want to know the **average treatment effect**:

$$
\tau = \frac{1}{T} \sum_{t \in [T]} y_t(1) - y_t(0)
$$

1. Decide treatment probability

 \boldsymbol{p}

1. Decide treatment probability

 \boldsymbol{p}

2. Begin the experiment.

For units $t = 1, 2, ...$ T:

- 1. Decide treatment probability
- 2. Begin the experiment.

For units $t = 1, 2, ...$ T:

Sample treatment assignment

 $Z_t \sim \text{Bern}(p)$

 p

1. Decide treatment probability

 \overline{p}

2. Begin the experiment.

For units $t = 1, 2, ...$ T:

Sample treatment assignment Observe one potential outcome $Z_t \sim \text{Bern}(p)$ $Y_t = Z_t \cdot y_t(1) + (1 - Z_t) \cdot y_t(0)$

1. Decide treatment probability

 \overline{p}

2. Begin the experiment.

For units $t = 1, 2, ...$ T:

Sample treatment assignment Observe one potential outcome $Z_t \sim \text{Bern}(p)$ $Y_t = Z_t \cdot y_t(1) + (1 - Z_t) \cdot y_t(0)$

3. Estimate T with the Horvitz-Thompson estimator:

$$
\hat{\tau} = \frac{1}{T} \sum_{t \in [T]} Y_t \left(\frac{Z_t}{p} + \frac{1 - Z_t}{1 - p} \right)
$$

1. Decide treatment probability

 \mathcal{p}

2. Begin the experiment.

For units $t = 1, 2, ...$ T:

Sample treatment assignment Observe one potential outcome $Z_t \sim \text{Bern}(p)$ $Y_t = Z_t \cdot y_t(1) + (1 - Z_t) \cdot y_t(0)$

3. Estimate T with the Horvitz-Thompson estimator:

$$
\hat{\tau} = \frac{1}{T} \sum_{t \in [T]} Y_t \left(\frac{Z_t}{p} + \frac{1 - Z_t}{1 - p} \right)
$$

unbiased estimator

 \boldsymbol{p}

3. Estimate T with the Horvitz-Thompson estimator:

$$
\hat{\tau} = \frac{1}{T} \sum_{t \in [T]} Y_t \left(\frac{Z_t}{p} + \frac{1 - Z_t}{1 - p} \right)
$$

unbiased estimator

This work: minimize variance.

For any fixed p :

For any fixed p : $\overline{1}$

$$
\Gamma \cdot \text{Var}(\hat{\tau}) = S(1)^2 \left(\frac{1}{p} - 1\right) + S(0)^2 \left(\frac{1}{1 - p} - 1\right) + 2\rho S(1)S(0)
$$

For any fixed p :

$$
\overline{G} \cdot \text{Var}(\hat{\tau}) = S(1)^2 \left(\frac{1}{p} - 1\right) + S(0)^2 \left(\frac{1}{1 - p} - 1\right) + 2\rho S(1)S(0)
$$

Second moment:

$$
S(i) = \sqrt{\frac{1}{T} \sum_{t \in [T]} y_t(i)^2}
$$

$$
\rho = \frac{\frac{1}{T} \sum_{t \in [T]} y_t(0) y_t(1)}{S(1)S(0)}
$$

For any fixed p :

$$
\Gamma \cdot \text{Var}(\hat{\tau}) = S(1)^2 \left(\frac{1}{p} - 1\right) + S(0)^2 \left(\frac{1}{1 - p} - 1\right) + 2\rho S(1)S(0)
$$

Can't get rid of dependence on correlation

Second moment:

$$
S(i) = \sqrt{\frac{1}{T} \sum_{t \in [T]} y_t(i)^2}
$$

$$
\rho = \frac{\frac{1}{T} \sum_{t \in [T]} y_t(0) y_t(1)}{S(1)S(0)}
$$

For any fixed p :

$$
T \cdot \text{Var}(\hat{\tau}) = S(1)^2 \left(\frac{1}{p} - 1\right) + S(0)^2 \left(\frac{1}{1 - p} - 1\right) + \boxed{2\rho S(1)S(0)}
$$

Can't get rid of dependence on correlation

Then, set

$$
p^* = \left(1 + \sqrt{\frac{S(0)}{S(1)}}\right)^{-1}
$$

Second moment:

$$
S(i) = \sqrt{\frac{1}{T} \sum_{t \in [T]} y_t(i)^2}
$$

$$
\rho = \frac{\frac{1}{T} \sum_{t \in [T]} y_t(0) y_t(1)}{S(1)S(0)}
$$

For any fixed p :

$$
T \cdot \text{Var}(\hat{\tau}) = S(1)^2 \left(\frac{1}{p} - 1\right) + S(0)^2 \left(\frac{1}{1 - p} - 1\right) + 2\rho S(1)S(0)
$$

Can't get rid of dependence on correlation

Then, set

$$
p^* = \left(1 + \sqrt{\frac{S(0)}{S(1)}}\right)^{-1}
$$

Second moment:

$$
S(i) = \sqrt{\frac{1}{T} \sum_{t \in [T]} y_t(i)^2}
$$

Cosine similarity:

$$
\rho = \frac{\frac{1}{T} \sum_{t \in [T]} y_t(0) y_t(1)}{S(1)S(0)}
$$

and get variance* **normalized*

$$
T \cdot \text{Var}_N = 2(1+\rho)S(1)S(0)
$$

For any fixed p :

$$
T \cdot \text{Var}(\hat{\tau}) = S(1)^2 \left(\frac{1}{p} - 1\right) + S(0)^2 \left(\frac{1}{1 - p} - 1\right) + 2\rho S(1)S(0)
$$

Then, set

$$
p^* = \left(1 + \sqrt{\frac{S(0)}{S(1)}}\right)^{-1}
$$

Second moment:

$$
S(i) = \sqrt{\frac{1}{T} \sum_{t \in [T]} y_t(i)^2}
$$

Cosine similarity:

$$
\rho = \frac{\frac{1}{T} \sum_{t \in [T]} y_t(0) y_t(1)}{S(1)S(0)}
$$

and get variance* **normalized*

$$
T \cdot \text{Var}_N = 2(1+\rho)S(1)S(0)
$$

Substantially improving the *constant*, not the *rate* of O(1/T)

For any fixed p :

$$
\Gamma \cdot \text{Var}(\hat{\tau}) = S(1)^2 \left(\frac{1}{p} - 1 \right) + S(0)^2 \left(\frac{1}{1 - p} - 1 \right) + 2\rho S(1)S(0)
$$

Sum of squares

Then, set

$$
p^* = \left(1 + \sqrt{\frac{S(0)}{S(1)}}\right)^{-1}
$$

Second moment:

$$
S(i) = \sqrt{\frac{1}{T} \sum_{t \in [T]} y_t(i)^2}
$$

Cosine similarity:

$$
\rho = \frac{\frac{1}{T} \sum_{t \in [T]} y_t(0) y_t(1)}{S(1)S(0)}
$$

and get variance* **normalized*

$$
T \cdot \text{Var}_N = 2(1+\rho)S(1)S(0)
$$

Substantially improving the *constant*, not the **rate** of $O(1/T)$

For any fixed p :

$$
\Gamma \cdot \text{Var}(\hat{\tau}) = S(1)^2 \left(\frac{1}{p} - 1 \right) + S(0)^2 \left(\frac{1}{1 - p} - 1 \right) + 2\rho S(1)S(0)
$$

Product

Sum of squares

Then, set

$$
p^* = \left(1 + \sqrt{\frac{S(0)}{S(1)}}\right)^{-1}
$$

Second moment:

$$
S(i) = \sqrt{\frac{1}{T} \sum_{t \in [T]} y_t(i)^2}
$$

Cosine similarity:

$$
\rho = \frac{\frac{1}{T} \sum_{t \in [T]} y_t(0) y_t(1)}{S(1)S(0)}
$$

and get variance* **normalized*

$$
T \cdot \text{Var}_N = 2(1 + \rho \boxed{S(1)S(0)}
$$

Substantially improving the *constant*, not the **rate** of $O(1/T)$

For any fixed p :

$$
T \cdot \text{Var}(\hat{\tau}) = S(1)^2 \left(\frac{1}{p} - 1\right) + S(0)^2 \left(\frac{1}{1 - p} - 1\right) + 2\rho S(1)S(0)
$$

Then, set

$$
p^* = \left(1 + \sqrt{\frac{S(0)}{S(1)}}\right)^{-1}
$$

Second moment:

$$
S(i) = \sqrt{\frac{1}{T} \sum_{t \in [T]} y_t(i)^2}
$$

Cosine similarity:

$$
\rho = \frac{\frac{1}{T} \sum_{t \in [T]} y_t(0) y_t(1)}{S(1)S(0)}
$$

and get variance* **normalized*

$$
T \cdot \text{Var}_N = 2(1+\rho)S(1)S(0)
$$

For any fixed p :

and get variance*

$$
T \cdot \text{Var}(\hat{\tau}) = S(1)^2 \left(\frac{1}{p} - 1\right) + S(0)^2 \left(\frac{1}{1 - p} - 1\right) + 2\rho S(1)S(0)
$$

Then, set

**normalized*

$$
= \left(1 + \sqrt{\frac{S(0)}{S(1)}}\right)
$$
 We don't know
these outcomes!

$$
\rho = \frac{\frac{1}{T} \sum_{t \in [T]} y_t(0) y_t(1)}{S(1)S(0)}
$$

$$
T \cdot \text{Var}_N = 2(1+\rho)S(1)S(0)
$$
Neyman Variance: *the optimal allocation*

SOME ASPECTS OF THE SEQUENTIAL DESIGN OF EXPERIMENTS

HERBERT ROBBINS

Suppose we are dealing

with two normally distributed populations with unknown means μ_1 , μ_2 and variances σ_1^2 , σ_2^2 , and that we wish to estimate the value of the difference $\mu_1 - \mu_2$. In order to concentrate on the point at issue we shall suppose that the total sample size, n , is fixed. There remains the question of how the n observations are to be divided between the two populations. If \bar{x}_1 , \bar{x}_2 denote the means of samples of sizes n_1 , n_2 from the two populations, then $\bar{x}_1 - \bar{x}_2$ is an unbiased estimator of $\mu_1-\mu_2$, with variance $\sigma^2=(\sigma_1^2/n_1)+(\sigma_2^2/n_2)$. For fixed $n=n_1+n_2$, σ^2 is a minimum when $n_1/n_2 = \sigma_1/\sigma_2$.

… gestures at Neyman allocation

Some Aspects of the Sequential Designs of Experiments [Robbins 1952]

Suppose we are dealing

with two normally distributed populations with unknown means μ_1 , μ_2 and variances σ_1^2 , σ_2^2 , and that we wish to estimate the value of the difference $\mu_1 - \mu_2$. In order to concentrate on the point at issue we shall suppose that the total sample size, n , is fixed. There remains the question of how the n observations are to be divided between the two populations. If \bar{x}_1 , \bar{x}_2 denote the means of samples of sizes n_1 , n_2 from the two populations, then $\bar{x}_1 - \bar{x}_2$ is an unbiased estimator of $\mu_1-\mu_2$, with variance $\sigma^2=(\sigma_1^2/n_1)+(\sigma_2^2/n_2)$. For fixed $n=n_1+n_2$, σ^2 is a minimum when $n_1/n_2 = \sigma_1/\sigma_2$. If the latter ratio is known in advance, all is well. If this ratio is not known, but if the sampling can be done in two stages, then it would be reasonable to draw preliminary samples of some size m from each of the two populations and to use the values so obtained to estimate σ_1/σ_2 ; the remainder of the $n-2m$ observations could then be allocated to the two populations in accordance with the sample estimate of σ_1/σ_2 .

Two-stage design: recently studied in Hahn et.al. 2011, Blackwell et.al. 2022

Some Aspects of the Sequential Designs of Experiments [Robbins 1952]

Suppose we are dealing

with two normally distributed populations with unknown means μ_1 , μ_2 and variances σ_1^2 , σ_2^2 , and that we wish to estimate the value of the difference $\mu_1 - \mu_2$. In order to concentrate on the point at issue we shall suppose that the total sample size, n , is fixed. There remains the question of how the n observations are to be divided between the two populations. If \bar{x}_1 , \bar{x}_2 denote the means of samples of sizes n_1 , n_2 from the two populations, then $\bar{x}_1 - \bar{x}_2$ is an unbiased estimator of $\mu_1 - \mu_2$, with variance $\sigma^2 = (\sigma_1^2/n_1) + (\sigma_2^2/n_2)$. For fixed $n = n_1 + n_2$, σ^2 is a minimum when $n_1/n_2 = \sigma_1/\sigma_2$. If the latter ratio is known in advance, all is well. If this ratio is not known, but if the sampling can be done in two stages, then it would be reasonable to draw preliminary samples of some size m from each of the two populations and to use the values so obtained to estimate σ_1/σ_2 ; the remainder of the $n-2m$ observations could then be allocated to the two populations in accordance with the sample estimate of σ_1/σ_2 . The question then becomes, what is the best choice for m ? If m is small, no accurate estimate of σ_1/σ_2 can be made. If m is large, then the remaining $n-2m$ observations may be too few to permit full utilization of the approximate knowledge of σ_1/σ_2 . (This kind of dilemma is characteristic of all sequential design problems.) More generally, we could consider schemes in which the observations are made one by one, with the decision as to which population each observation should come from being allowed to depend on all the previous observations; the total sample size n could be fixed or could be a random variable dependent on the observations.

Proposes a fully adaptive experiment…

Some Aspects of the Sequential Designs of Experiments [Robbins 1952]

1. Begin the experiment.

1. Begin the experiment.

For units $t = 1, 2, ...$ T:

1. Begin the experiment.

For units $t = 1, 2, ...$ T:

Determine treatment probability

1. Begin the experiment.

For units $t = 1, 2, ...$ T:

Determine treatment probability

Sample treatment assignment

1. Begin the experiment.

For units $t = 1, 2, ...$ T:

Determine treatment probability

Sample treatment assignment

Observe one potential outcome

 $\overline{Z_t} \sim \text{Bern}(P_t)$ $Y_t = Z_t \cdot y_t(1) + (1 - Z_t) \cdot y_t(0)$

1. Begin the experiment.

For units $t = 1, 2, ...$ T:

Determine treatment probability

Sample treatment assignment

Observe one potential outcome

 $Z_t \sim \text{Bern}(P_t)$ $Y_t = Z_t \cdot y_t(1) + (1 - Z_t) \cdot y_t(0)$

2. Estimate τ with the adaptive Horvitz-Thompson estimator:

$$
\hat{\tau} = \frac{1}{T} \sum_{t \in [T]} Y_t \left(\frac{Z_t}{P_t} + \frac{1 - Z_t}{1 - P_t} \right)
$$

1. Begin the experiment.

For units $t = 1, 2, ...$ T:

Determine treatment probability

Sample treatment assignment

Observe one potential outcome

 $\overline{Z_t} \sim \text{Bern}(P_t)$ $Y_t = Z_t \cdot y_t(1) + (1 - Z_t) \cdot y_t(0)$

2. Estimate τ with the adaptive Horvitz-Thompson estimator:

$$
\hat{\tau} = \frac{1}{T} \sum_{t \in [T]} Y_t \left(\frac{Z_t}{P_t} + \frac{1 - Z_t}{1 - P_t} \right)
$$

unbiased estimator

$$
\hat{\tau} = \frac{1}{T} \sum_{t \in [T]} Y_t \left(\frac{Z_t}{P_t} + \frac{1 - Z_t}{1 - P_t} \right)
$$

unbiased estimator

With adaptivity,

With adaptivity,

$$
T \cdot \text{Var}(\hat{\tau}) = \frac{1}{T} \sum_{t \in [T]} \left(y_t(1)^2 \cdot \mathbb{E}\left[\frac{1}{P_t}\right] + y_t(0)^2 \cdot \mathbb{E}\left[\frac{1}{1 - P_t}\right] \right) - \frac{1}{T} \sum_{t \in [T]} \left(y_t(1) - y_t(0) \right)^2
$$

With adaptivity,

$$
T \cdot \text{Var}(\hat{\tau}) = \frac{1}{T} \sum_{t \in [T]} \left(y_t(1)^2 \cdot \mathbb{E}\left[\frac{1}{P_t}\right] + y_t(0)^2 \cdot \mathbb{E}\left[\frac{1}{1 - P_t}\right] \right) - \frac{1}{T} \sum_{t \in [T]} \left(y_t(1) - y_t(0) \right)^2
$$

Let's notate

$$
f_t(p) = \frac{y_t(1)^2}{p} + \frac{y_t(0)^2}{1-p}
$$

With adaptivity,

$$
T \cdot \text{Var}(\hat{\tau}) = \frac{1}{T} \sum_{t \in [T]} \left(y_t(1)^2 \cdot \mathbb{E}\left[\frac{1}{P_t}\right] + y_t(0)^2 \cdot \mathbb{E}\left[\frac{1}{1 - P_t}\right] \right) - \frac{1}{T} \sum_{t \in [T]} \left(y_t(1) - y_t(0) \right)^2
$$

Let's notate

$$
f_t(p) = \frac{y_t(1)^2}{p} + \frac{y_t(0)^2}{1-p}
$$

"controllable contribution of unit t to the total variance"

With adaptivity,

$$
T \cdot \text{Var}(\hat{\tau}) = \frac{1}{T} \sum_{t \in [T]} \left(y_t(1)^2 \cdot \mathbb{E}\left[\frac{1}{P_t}\right] + y_t(0)^2 \cdot \mathbb{E}\left[\frac{1}{1 - P_t}\right] \right) - \frac{1}{T} \sum_{t \in [T]} \left(y_t(1) - y_t(0) \right)^2
$$

Let's notate

$$
f_t(p) = \frac{y_t(1)^2}{p} + \frac{y_t(0)^2}{1-p}
$$

"controllable contribution of unit t to the total variance"

Then, Neyman Regret is defined as

$$
\mathcal{R}_T = \sum_{t \in [T]} f_t(P_t) - \min_{p \in [0,1]} \sum_{t \in [T]} f_t(p)
$$

$$
\mathcal{R}_T = \sum_{t \in [T]} f_t(P_t) - \min_{p \in [0,1]} \sum_{t \in [T]} f_t(p)
$$

$$
\mathcal{R}_T = \left[\sum_{t \in [T]} f_t(P_t) - \min_{p \in [0,1]} \sum_{t \in [T]} f_t(p) \right]
$$

"incurred variance from actual allocation"

$$
\mathcal{R}_T = \sum_{t \in [T]} f_t(P_t) - \min_{p \in [0,1]} \sum_{t \in [T]} f_t(p)
$$

"incurred variance from actual allocation" "minimum variance from best possible allocation"

$$
\mathcal{R}_T = \sum_{t \in [T]} f_t(P_t) - \min_{p \in [0,1]} \sum_{t \in [T]} f_t(p)
$$

With this definition, minimizing Neyman regret also minimizes variance:

$$
T\cdot V-T\cdot V_N=\frac{1}{T}\mathbb{E}[\mathcal{R}_T]
$$

$$
\mathcal{R}_T = \sum_{t \in [T]} f_t(P_t) - \min_{p \in [0,1]} \sum_{t \in [T]} f_t(p)
$$

With this definition, minimizing Neyman regret also minimizes variance:

$$
T\cdot V - T\cdot V_N = \frac{1}{T}\mathbb{E}[\mathcal{R}_T]
$$

This turns a statistical problem into an algorithmic problem:

$$
T \cdot V \to T \cdot V_N \iff \mathbb{E}[\mathcal{R}_T] = o(T)
$$

 $\mathcal{R}_T = \sum_{t\in[T]} f_t(P_t) - \min_{p\in[0,1]} \sum_{t\in[T]} f_t(p)$

$$
\mathcal{R}_T = \sum_{t \in [T]} f_t(P_t) - \min_{p \in [0,1]} \sum_{t \in [T]} f_t(p)
$$

Good: objective
$$
f_t(p) = \frac{y_t(1)^2}{p} + \frac{y_t(0)^2}{1-p}
$$
 is convex

$$
\mathcal{R}_T = \sum_{t \in [T]} f_t(P_t) - \min_{p \in [0,1]} \sum_{t \in [T]} f_t(p)
$$

Good: objective
$$
f_t(p) = \frac{y_t(1)^2}{p} + \frac{y_t(0)^2}{1-p}
$$
 is convex

can borrow techniques from online convex opt

$$
\mathcal{R}_T = \sum_{t \in [T]} f_t(P_t) - \min_{p \in [0,1]} \sum_{t \in [T]} f_t(p)
$$

Good: objective
$$
f_t(p) = \frac{y_t(1)^2}{p} + \frac{y_t(0)^2}{1-p}
$$
 is convex **Can we use online gradient descent?**

can borrow techniques from online convex opt

$$
\mathcal{R}_T = \sum_{t \in [T]} f_t(P_t) - \min_{p \in [0,1]} \sum_{t \in [T]} f_t(p)
$$

Good: objective $f_t(p) = \frac{y_t(1)^2}{p} + \frac{y_t(0)^2}{1-p}$ is convex Can we use online gradient descent?

can borrow techniques from online convex opt

Less good: fundamental problem of causal inference only observe $Y_t = y_t(Z_t)$, not $(y_t(1), y_t(0))$

$$
\mathcal{R}_T = \sum_{t \in [T]} f_t(P_t) - \min_{p \in [0,1]} \sum_{t \in [T]} f_t(p)
$$

Good: objective $f_t(p) = \frac{y_t(1)^2}{p} + \frac{y_t(0)^2}{1-p}$ is convex Can we use online gradient descent?

Less good: fundamental problem of causal inference only observe $Y_t = y_t(Z_t)$, not $(y_t(1), y_t(0))$

can borrow techniques from online convex opt

can construct an unbiased estimator for the gradient

$$
\mathcal{R}_T = \sum_{t \in [T]} f_t(P_t) - \min_{p \in [0,1]} \sum_{t \in [T]} f_t(p)
$$

Good: objective $f_t(p) = \frac{y_t(1)^2}{p} + \frac{y_t(0)^2}{1-p}$ is convex Can we use online gradient descent?

can borrow techniques from online convex opt

Less good: fundamental problem of causal inference only observe $Y_t = y_t(Z_t)$, not $(y_t(1), y_t(0))$

can construct an unbiased estimator for the gradient

Challenging: gradients $\nabla f_t(p)$ blow up at the boundary

$$
\mathcal{R}_T = \sum_{t \in [T]} f_t(P_t) - \min_{p \in [0,1]} \sum_{t \in [T]} f_t(p)
$$

Good: objective $f_t(p) = \frac{y_t(1)^2}{p} + \frac{y_t(0)^2}{1-p}$ is convex Can we use online gradient descent?

Less good: fundamental problem of causal inference only observe $Y_t = y_t(Z_t)$, not $(y_t(1), y_t(0))$

can construct an unbiased estimator for the gradient

can borrow techniques from online convex opt

Challenging: gradients $\nabla f_t(p)$ blow up at the boundary

need to clip gradient updates

Our Algorithm: Clip-OGD (intuition)

Our Algorithm: Clip-OGD (intuition)

 $f_t(p)$

Algorithm 1: CLIP-OGD

Input: Step size η and decay parameter α Initialize $P_0 \leftarrow 1/2$ and $G_0 \leftarrow 0$ for $t = 1, \ldots, T$ do Set projection parameter $\delta_t = (1/2) \cdot t^{-1/\alpha}$ Compute new treatment probability $P_t \leftarrow \mathcal{P}_{\delta_t}(P_{t-1} - \eta \cdot G_{t-1})$ Sample treatment assignment Z_t as 1 with probability P_t and 0 with probability $1 - P_t$ Observe outcome $Y_t = \mathbf{1}[Z_t = 1]y_t(1) + \mathbf{1}[Z_t = 0]y_t(0)$ Construct gradient estimator $G_t = Y_t^2 \left(-\frac{\mathbf{1}[Z_t=1]}{P_t^3} + \frac{\mathbf{1}[Z_t=0]}{(1-P_t)^3} \right)$ end

Algorithm 1: CLIP-OGD

Input: Step size η and decay parameter α **Initialize** $P_0 \leftarrow 1/2$ **and** $G_0 \leftarrow 0$ **

for** $t = 1...T$ **do clipped interval for current unit; grows with t** for $t=1 \ldots T$ do Set projection parameter $\delta_t = (1/2) \cdot t^{-1/\alpha}$ Compute new treatment probability $P_t \leftarrow \mathcal{P}_{\delta_t}(P_{t-1} - \eta \cdot G_{t-1})$ Sample treatment assignment Z_t as 1 with probability P_t and 0 with probability $1 - P_t$ Observe outcome $Y_t = 1[Z_t = 1]y_t(1) + 1[Z_t = 0]y_t(0)$ Construct gradient estimator $G_t = Y_t^2 \left(-\frac{\mathbf{1}[Z_t=1]}{P_t^3} + \frac{\mathbf{1}[Z_t=0]}{(1-P_t)^3} \right)$ end

Algorithm 1: CLIP-OGD

Input: Step size η and decay parameter α Initialize $P_0 \leftarrow 1/2$ and $G_0 \leftarrow 0$ for $t = 1, \ldots, T$ do Set projection parameter $\delta_t = (1/2) \cdot t^{-1/\alpha}$ Compute new treatment probability $P_t \leftarrow \mathcal{P}_{\delta_t}(P_{t-1} - \eta \cdot G_{t-1})$ Sample treatment assignment Z_t as 1 with probability P_t and 0 with probability $1 - P_t$ Observe outcome $Y_t = 1[Z_t = 1]y_t(1) + 1[Z_t = 0]y_t(0)$ Construct gradient estimator $G_t = Y_t^2 \left(-\frac{\mathbf{1}[Z_t=1]}{P_t^3} + \frac{\mathbf{1}[Z_t=0]}{(1-P_t)^3} \right)$ end

Algorithm 1: CLIP-OGD

Input: Step size η and decay parameter α Initialize $P_0 \leftarrow 1/2$ and $G_0 \leftarrow 0$ for $t = 1, \ldots, T$ do Set projection parameter $\delta_t = (1/2) \cdot t^{-1/\alpha}$ Compute new treatment probability $P_t \leftarrow \mathcal{P}_{\delta_t}(P_{t-1} - \eta \cdot G_{t-1})$ Sample treatment assignment Z_t as 1 with probability P_t and 0 with probability $1 - P_t$ Observe outcome $Y_t = \mathbf{1}[Z_t = 1]y_t(1) + \mathbf{1}[Z_t = 0]y_t(0)$ Construct gradient estimator $G_t = Y_t^2 \left(-\frac{\mathbf{1}[Z_t=1]}{P_t^3} + \frac{\mathbf{1}[Z_t=0]}{(1-P_t)^3} \right)$ end

Algorithm 1: CLIP-OGD

Input: Step size η and decay parameter α Initialize $P_0 \leftarrow 1/2$ and $G_0 \leftarrow 0$ for $t = 1, \ldots, T$ do Set projection parameter $\delta_t = (1/2) \cdot t^{-1/\alpha}$ Compute new treatment probability $P_t \leftarrow \mathcal{P}_{\delta_t}(P_{t-1} - \eta \cdot G_{t-1})$ Sample treatment assignment Z_t as 1 with probability P_t and 0 with probability $1 - P_t$ Observe outcome $Y_t = \mathbf{1}[Z_t = 1]y_t(1) + \mathbf{1}[Z_t = 0]y_t(0)$ Construct gradient estimator $G_t = Y_t^2 \left(-\frac{1[Z_t=1]}{P_t^3} + \frac{1[Z_t=0]}{(1-P_t)^3} \right)$ end

 G_t estimates the gradient of $f_t(P_t)$

Assume: $\exists c \leq C$ such that 1. For $i \in \{0,1\}$, $c \le \left(\frac{1}{T}\sum_{t \in [T]} y_t(i)^2\right)^{1/2} \le \left(\frac{1}{T}\sum_{t \in [T]} y_t(i)^4\right)^{1/4} \le C$

2. Cosine similarity bounded below: $\rho \geq -(1-c)$

Assume:
$$
\exists c \leq C
$$
 such that\n1. For $i \in \{0,1\}$, $c \leq \left(\frac{1}{T} \sum_{t \in [T]} y_t(i)^2\right)^{1/2} \leq \left(\frac{1}{T} \sum_{t \in [T]} y_t(i)^4\right)^{1/4} \leq C$

2. Cosine similarity bounded below: $\rho \geq -(1-c)$

Set: $\eta = \sqrt{1/T}$, $\alpha = \sqrt{5 \log(T)}$

Assume:
$$
\exists c \leq C
$$
 such that
\n1. For $i \in \{0, 1\}$, $c \leq \left(\frac{1}{T} \sum_{t \in [T]} y_t(i)^2\right)^{1/2} \leq \left(\frac{1}{T} \sum_{t \in [T]} y_t(i)^4\right)^{1/4} \leq C$

2. Cosine similarity bounded below: $\rho \geq -(1-c)$

Set: $\eta = \sqrt{1/T}$, $\alpha = \sqrt{5 \log(T)}$

Clip-OGD approaches the Neyman (optimal) variance at a rate of \sqrt{T} :

$$
\mathbb{E}[\mathcal{R}_T]=\tilde{\mathcal{O}}(\sqrt{T})
$$

Assume:
$$
\exists c \leq C
$$
 such that\n1. For $i \in \{0, 1\}$, $c \leq \left(\frac{1}{T} \sum_{t \in [T]} y_t(i)^2\right)^{1/2} \leq \left(\frac{1}{T} \sum_{t \in [T]} y_t(i)^4\right)^{1/4} \leq C$

2. Cosine similarity bounded below: $\rho \geq -(1-c)$

Set: $\eta = \sqrt{1/T}$, $\alpha = \sqrt{5 \log(T)}$

Clip-OGD approaches the Neyman (optimal) variance at a rate of \sqrt{T} : *(hides subpolynomial factors)*

$$
\mathbb{E}[\mathcal{R}_T]=\tilde{\mathcal{O}}(\sqrt{T})
$$

(Nonstandard) variance estimation approach:

(Nonstandard) variance estimation approach:

 $T \cdot V_{\text{Clip-OGD}} \rightarrow T \cdot V_N$

by construction of Clip-OGD

(Nonstandard) variance estimation approach:

 $T \cdot V_{\text{Clip-OGD}} \rightarrow T \cdot V_N$ by construction of Clip-OGD $= 2(1+\rho)S_1S_0$ by definition of Neyman variance

(Nonstandard) variance estimation approach:

 $T \cdot V_{\text{Clip-OGD}} \rightarrow T \cdot V_N$ by construction of Clip-OGD $= 2(1+\rho)S_1S_0$ by definition of Neyman variance $\leq 4S_1S_0$ upper bound on ρ

(Nonstandard) variance estimation approach:

$$
T \cdot V_{\text{Clip-OGD}} \to T \cdot V_N
$$

= 2(1 + ρ)S₁S₀

$$
\leq \frac{4S_1S_0}{T \cdot VB}
$$

by construction of Clip-OGD

by definition of Neyman variance

upper bound on ρ

quantity to estimate

(Nonstandard) variance estimation approach:

$$
T \cdot V_{\text{Clip-OGD}} \to T \cdot V_N
$$

= 2(1 + ρ)S₁S₀

$$
\leq \frac{4S_1S_0}{T \cdot VB}
$$

by construction of Clip-OGD

by definition of Neyman variance

upper bound on ρ

quantity to estimate

Chebyshev-style confidence intervals:

$$
\lim_{T \to \infty} \inf \Pr \left[\tau \in \hat{\tau} \pm \alpha^{-1/2} \sqrt{\widehat{V}} \widehat{B} \right] \ge 1 - \alpha
$$

(Nonstandard) variance estimation approach:

$$
T \cdot V_{\text{Clip-OGD}} \to T \cdot V_N
$$

= 2(1 + ρ)S₁S₀ by

$$
\leq \frac{4S_1S_0}{T \cdot VB}
$$

by construction of Clip-OGD

by definition of Neyman variance

ipper bound on ρ

quantity to estimate

Chebyshev-style confidence intervals:

$$
\lim_{T \to \infty} \inf \Pr \left[\tau \in \hat{\tau} \pm \alpha^{-1/2} \widehat{\sqrt{\widehat{VB}}} \right] \geq 1 - \alpha
$$

Treatment: provide a new insurance product **Outcome:** amount of money invested in equipment

We impute missing potential outcomes & extend size from T=2961 to 14445

Treatment: provide a new insurance product **Outcome:** amount of money invested in equipment

We impute missing potential outcomes & extend size from T=2961 to 17445

Treatment: provide a new insurance product **Outcome:** amount of money invested in equipment

We impute missing potential outcomes & extend size from T=2961 to 17445

What if units came in a slightly different order?

Treatment: provide a new insurance product **Outcome:** amount of money invested in equipment

We impute missing potential outcomes & extend size from T=2961 to 17445

With first 100 outcomes corrupted

Additional Results: Other Designs?

O(T) lower bound on explore-then-commit design Impossibility result/ tradeoff for outcome and Neyman regret

Thank you!

Jessica Dai, UC Berkeley jessicadai@berkeley.edu

Chris Harshaw MIT

Paula Gradu U.C. Berkeley

Clip-OGD: An Experimental Design for Adaptive Neyman Allocation Jessica Dai, Paula Gradu, Chris Harshaw NeurIPS 2023 https://arxiv.org/abs/2305.17187

Impossibility result: Neyman Regret and Outcome Regret

Let
$$
\mathcal{R}_T^{\text{outcome}} = \frac{1}{T} \sum_{t \in [T]} Y_t - \min_{i \in \{0,1\}} \sum_{t \in [T]} Y_t(i).
$$

Suppose algorithm *A* for sequential allocation is no-outcome-regret:

$$
\mathbb{E}[\mathcal{R}_T^{\text{outcome}}] = \mathcal{O}(T^q) \quad \text{for } q \in (0,1)
$$

Then *A* must suffer supralinear Neyman regret:

$$
\mathbb{E}[\mathcal{R}^{\mathrm{Neyman}}_T] \geq \Omega(T)
$$

No math here

Any allocation which prioritizes outcomes within the experiment will worsen the information gained from the experiment.

Proof sketch:

definition of outcome regret implies

which means that

which lower bounds

$$
\sum_{t \in [T]} \mathbb{E}[P_t] \le O(T^q)
$$

$$
\sum_{t \in [T]} \frac{1}{\mathbb{E}[P_t]} \ge O(T^{2-q})
$$

$$
\mathbb{E}\left[\sum_{t \in [T]} f_t(P_t)\right] \ge O(T^{2-q})
$$

and therefore the Neyman regret.