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Abstract

When an individual reports a negative interaction with some system, how can their personal expe-
rience be contextualized within broader patterns of system behavior? We study the incident database
problem, where individual reports of adverse events arrive sequentially, and are aggregated over time. In
this work, our goal is to identify whether there are subgroups—defined by any combination of relevant
features—that are disproportionately likely to experience harmful interactions with the system. We for-
malize this problem as a sequential hypothesis test, and identify conditions on reporting behavior that are
sufficient for making inferences about disparities in true rates of harm across subgroups. We show that
algorithms for sequential hypothesis tests can be applied to this problem with a standard multiple testing
correction. We then demonstrate our method on real-world datasets, including mortgage decisions and
vaccine side effects; on each, our method (re-)identifies subgroups known to experience disproportionate
harm using only a fraction of the data that was initially used to discover them.

1 Introduction

The impact of injustice is most acutely felt by the individual. But if an individual experiences harm, how
can they know whether their experience is an isolated incident or part of a larger pattern of discrimination?

Fairness work has historically focused on model developers and third-party auditors as the main actors
involved in creating fair mechanisms, motivating methods to construct models that are fair with respect to
pre-defined subgroups at development time (e.g. as surveyd in Pessach and Shmueli [2022])—or in identifying
unfair ones, motivating post-hoc audits that occur after the entire decision-making process has completed
(e.g., [Byun et al., 2024, Martinez and Kirchner, 2021]). However, in most applications where fairness is
a concern, problems with the system may only emerge over time, and it is not necessarily obvious which
subgroups might be important. Moreover, such approaches to fairness provide no mechanism for individuals
to raise concerns.

It is exactly this question of individual agency that drives our work. In addition to normative concerns,
which suggest that individuals ought to have a voice in expressing concerns with their treatment (see, for
example, the literature on contestability of algorithmic decisions, e.g. Vaccaro et al. [2019]), recent legislation
has also highlighted individual reporting as a policy mandate for the governance of AI systems (e.g., the
EU AI act [European Parliament, 2023]). While such legislation has yet to see full implementation, mecha-
nisms for individual incident reporting already exist in a variety of application domains, including consumer
finance, medical devices, and vaccines and pharmaceuticals. A key component of reporting databases in
the latter settings is that information from individual reports are aggregated to build collective knowledge
about specific vaccines or pharmaceuticals—and, when applicable, this aggregated information can drive
downstream decisionmaking, such as updating vaccine guidelines or drug treatment protocols (e.g. Oster
et al. [2022]).

Fairness is an especially salient application for incident reporting systems: while individuals bear the
harm, commonly-accepted (and legally-legible) notions of fairness are understood at an aggregate level. In
fact, existing examples of (algorithmic) discrimination lawsuits (e.g., Gilbert [2023] in hiring, or in housing)
are often structured as class actions, even as they are initiated by individuals based on their personal



experiences. Crucially, individuals themselves may not know whether their experience with the system was
inherently problematic, and deserving of redress, until it is placed in context with the experiences of others.
On the other hand, while existing incident databases do not typically analyze reporting behavior, it may
be necessary to consider reporting more carefully in order for incident databases to be useful for fairness
auditing in more general settings, such as for algorithms that make allocation decisions.

In this paper, we consider what a realistic approach to assessing fairness claims from an incident database
might look like in practice. We are primarily interested in designing a framework for the general public
to report and contest large-scale harms by leveraging reports of individual experience to inform collective
evidence of discrimination. Our contributions are as follows.

1. Model. We propose incident databases, which allow individuals to submit reports of negative inter-
actions, as a new mechanism for post-deployment fairness auditing. We show how to find evidence of
disparately impacted subgroups without requiring knowledge of expected incidence rates. In particu-
lar, we identify conditions on reporting behavior and show how they can be used to to make inferences
about rates of true harm (Section 3).

2. Algorithms. Our formalization of the problem allows us to leverage known approaches to sequen-
tial hypothesis testing, with theoretical guarantees that inherit from properties of those algorithms.
We show how to instantiate two reasonable algorithms for our proposed test and provide theoretical
guarantees for each (Section 4).

3. Real-world validation. We illustrate the usefulness of our approach using real-world datasets, for
applications with known disparity in per-subgroup rates of harm. On both real vaccine incident reports
and on mortgage allocation decisions, our algorithm correctly identifies groups that disproportionately
experience harm—and does so using a comparatively small number of reports (Section 5).

1.1 Related work

The incident database problem we study is at the intersection of various challenges addressed in fairness and
statistics. We give an overview here and provide more detailed technical discussion of the most closely-related
works in Appendix A.

Algorithmic accountability via (individual) reports. Some recent work considers methods for learn-
ing about fairness problems via individual reports from both theoretical [Globus-Harris et al., 2022] and
practical [Agostini et al., 2024] perspectives. However, most discussion of individual experiences in machine
learning fairness literature is limited to contexts where the objective is to assess, appeal, contest or seek
recourse for that individual to change their individual outcomes, rather than forming a collective judgment
about the system as a whole [Sharifi-Malvajerdi et al., 2019, Ustun et al., 2019, Karimi et al., 2022]. Other
work on identifying fairness-related issues via reporting data has typically focused on learning in batch
and/or post-hoc contexts. Positive-unlabeled (PU) learning has been suggested as a mechanism for learning
from reporting data, especially in the context of modeling disparate reporting rates across subgroups (e.g.,
Shanmugam et al. [2024], Wu and He [2022]). In other works, identifying disparate reporting rates is itself
is the central challenge (e.g., Liu and Garg [2022], Liu et al. [2024]).

On the other hand, an emerging body of literature from the human-computer interaction community
develops the concept of contestability (e.g., Almada [2019], Vaccaro et al. [2019], Landau et al. [2024],
Karusala et al. [2024]); though contestability is still typically understood in terms of individual outcomes, we
see our work as one possible path to implementing this ideal, with an eye towards empowering contestability
at larger scale.

Fairness auditing as hypothesis testing. Cen and Alur makes a direct connection between legal AI
fairness audit requirements and hypothesis testing, although mainly considers a post-hoc setting. Cherian
and Candès [2023] take a multiple testing approach for handling a large number of groups, but this test is
again post-hoc (or entirely pre-deployment). Perhaps the most closely related works are that of Chugg et al.
[2024] and Feng et al., who propose applying a sequential hypothesis test with the explicit goal of quickly
identifying bias in deployed systems in real time.
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Identifying and defining subgroups. One approach to subgroup definition, following the line of work
in multicalibration Hébert-Johnson et al. [2018], is to simply enumerate over all possible combinations of
covariates. For sequential problems, per-group guarantees can be provided for subgroups that are learned
online [Dai et al., 2024]; in the context of sequential experiments, Adam et al. [2024] propose an approach
to early stopping that does not require the experimenter to pre-specify the group experiencing harm.

Sequential and multiple hypothesis testing. We leverage the recent literature on e-values (e.g. Waudby-
Smith and Ramdas [2024], Vovk and Wang [2021]), which can be used to construct sequential tests that have
validity guarantees in finite samples. While existing literature suggests methods for global null testing that
can aggregate e-processes (e.g., Cho et al. [2024] or Chi et al. [2022]), such approaches are unable to pro-
vide per-hypothesis guarantees. More classical approaches include Wald’s Sequential Probability Ratio Test
(SPRT) and its extensions, such as Max-SPRT [Kulldorff et al., 2011], or a sequential generalization of the
Holm procedure Bartroff and Song [2014].

Incident database analysis Sequential hypothesis tests have been used for real-world monitoring of
adverse incidents in vaccines and medical devices (see, e.g., Shimabukuro et al. [2015]). Descriptive studies
have identified disparate adverse impacts in pharmaceutical [Lee et al., 2023, Whitley and Lindsey, 2009]
and vaccine settings [Oster et al., 2022].

Finally, we note that for AI systems, the term “incident database” been used to describe systems for
monitoring the adverse impact of algorithmic deployments (e.g., Turri and Dzombak [2023], Feffer et al.
[2023], Raji et al. [2022]). However, in the context of our work, we are actively excluding accident catalog
databases, which include the colloquially named “AI incident” databases that draw direct inspiration from
them (e.g., McGregor [2021], Ojewale et al. [2024]). Instead, we focus on reporting databases that provide
records of individual experiences of adverse events that are tied to specific systems.

2 Model, Notation, and Preliminaries

The goal of constructing an incident database is to determine whether some system that individuals interact
with—for example, an (algorithmic) loan decision system, or a medical treatment—results in disproportionate
harm to some meaningful subgroups. For the incident database associated with a particular system, we will
use Y ∈ {0, 1} as an indicator variable that denotes the undesirable event corresponding to that system. For
example, in loan decisions, this could correspond to the event that a highly-qualified individual was denied
a loan; in the medical setting, this may be an adverse physical side effect due to the treatment.

Subgroup definitions. Individuals are characterized with feature vectorsX ∈ X , and we index individuals
as Xi (“features of individual i”) or Xt (“features of the individual who reports at time t”). Every individual
Xi “belongs to” at least one group G, and we will denote the event that Xi belongs to G as {Xi ∈ G}; we will
use G to denote the set of all possible groups. This set of possible groups G can be defined arbitrarily as long
as all groups can be determined as a function of covariates X . We allow for groups to be overlapping—that
is, we allow each individual Xi to be in multiple groups so that |{G′ ∈ G : Xi ∈ G′}| ≥ 1. For example, it is
possible to set G := 2X as in Hébert-Johnson et al. [2018].

Reference population. The system for which the database is constructed naturally has a corresponding
reference population of eligible individuals. For example, this could be everyone who has applied for a loan,
or everyone who has been prescribed a certain medication. Thus, given a set of groups G, we assume that it
is possible to compute the composition of the reference population.

Assumption 2.1 (Reference population). For every G ∈ G, the quantity µ0
G := Pr[X ∈ G] is known.

Throughout this work, we refer to the set {µ0
G}G∈G as base preponderances.

Reporting. As the database administrator, the high-level goal is to determine whether there exists some
subgroup G ∈ G where Pr[Y | X ∈ G] is abnormally high. Crucially, the database does not have access to
information about every individual who has interacted with the system; instead, individuals may report to
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the database if they believe that they experienced bad event Y . We let Ri be a random variable representing
whether individual i decides to report (with Ri = 0 indicating no report). A key quantity for each group is
µG := Pr[Xi ∈ G | Ri = 1], that is, the proportion of reports that each G comprises; we sometimes refer to
{µG}G∈G as (reporting) preponderances. A central claim of this paper is that comparing µG to µ0

G—that is,
the extent to which group G is (over)represented within the reporting database—can be a useful signal for
Pr[Y | G] in a wide class of applications.

In our model, reports are received sequentially, and each individual Xt belongs to each group G with
probability µG—that is, 1[Xt ∈ G] ∼i.i.d. Bern(µG).

1 The i.i.d. model of course simplifies the analysis and
exposition, but itself is not intrinsic to modeling the incident reporting problem as a sequential hypothesis
test. As we will show in Section 4.2, the explicit i.i.d. assumption can be relaxed; more generally, any
probabilistic model for sequential testing can be adapted to incident reporting.

3 Identifying Discrimination by Modeling Preponderance

A major challenge of assessing potentially-differential rates of harm across subgroups using only reporting
data is to relate the event that someone submits a report to the event that they experienced harm. That is,
if someone did experience a negative outcome, how likely is it for them to have reported it, and conversely,
how if someone submitted a report, how likely is it to reflect “true” harm? Moreover, as is known from prior
work, reporting rates themselves can vary across subgroups.

Our central proposal is to conduct a hypothesis test for each group to determine whether it is overrep-
resented by a factor of β among reports. That is, for each G ∈ G, we test the following hypotheses:

HG
0 : µG < βµ0

G HG
1 : µG > βµ0

G. (1)

In Section 4, we will discuss concrete algorithms for conducting this test sequentially and their corresponding
theoretical guarantees. Before doing so, we first argue that testing for preponderance among reports, i.e.,
tracking µG in this way, can be a meaningful way to identify discrimination. In Sections 3.1 and 3.2, we
describe two distinct ways that this particular test can be interpreted; see Appendix B for a discussion of
some practical considerations for the modeling task.

3.1 Preponderance as relative risk

The first interpretation of our test allows us to make inferences about relative risk, the ratio between the
rate of harm experienced by group G and on average over the population. In this interpretation, the key
quantity is the report-to-incidence ratio.

Definition 3.1 (Report-to-incidence ratio). We define the report-to-incidence-ratio (RIR) as ρ := Pr[R=1]
Pr[Y=1] ,

and the group-conditional analogue as ρG := Pr[R=1|G]
Pr[Y=1|G] .

In Proposition 3.2, we show that if the group-conditional RIR of some group G is at most some constant
multiple of the population-wide RIR, then we can easily convert a lower bound on report preponderence into
a lower bound on true relative risk.

Proposition 3.2. Define the relative risk of group G to be RRG := Pr[Y=1|G]
Pr[Y=1] . Suppose that for some group

G we have ρG ≤ b · ρ. Suppose that we determine that µG ≥ βµ0
G for some β > 1. Then the true relative

risk experienced by G is at least RRG ≥ β/b.

Proof. First, note that by definition of ρ, ρG, and RRG, we have

ρG ≤ b · ρ ⇐⇒ Pr[R = 1 | G]

Pr[Y = 1 | G]
≤ b · Pr[R = 1]

Pr[Y = 1]
⇐⇒ RRG ≥

Pr[R = 1 | G]

Pr[R = 1]
· 1
b
.

By Bayes’ rule, Pr[R=1|G]
Pr[R=1] = Pr[G|R=1]

Pr[G] = µG

µ0
G
; furthermore, by assumption, we have µG

µ0
G
≥ β. The result

follows from combining with the previous display.

1Note that, because we allow groups to overlap, we cannot enforce
∑

G µ0
G = 1 or

∑
G µG = 1, and moreover the events

{Xt ∈ G} and {Xt ∈ G′} are correlated for any G,G′ ∈ G, i.e. the independence does not hold across groups. The key point
in our case is independence across time.
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For example, suppose we take maxG ρG/ρ ≤ b = 1.25, i.e., no group over-reports 25% more frequently
than the population average. Then, if a test identifies a group G for which µG ≥ 1.75 · µ0

G, this implies that
the true relative risk of harm for group G is at least RRG ≥ 1.4—that is, G experiences harm 40% more
frequently relative to the population average.

3.2 Preponderance as true incidence rate

We now discuss an alternate way to convert a lower bound on preponderance into a guarantee on real-
world harm. In this case, we can infer the true incidence rate of harm (that is, no longer relative to the
average) if we are able to estimate—or willing to make assumptions on—true and false reporting behavior
in groups. Moreover, assumptions (or estimations) of these reporting rates need only be made in relation to
the population average reporting rate Pr[R].

Definition 3.3 (Reporting rates). Let r := Pr[R] be the average reporting rate over the full population. Let
γTR
G := 1

r Pr[Ri = 1 | Yi = 1, Xi ∈ G], γFR
G := 1

r Pr[Ri = 1 | Yi = 0, Xi ∈ G], Finally, let IRG := Pr[Y | G]
represent the true incidence rate, i.e. the likelihood that an individual in G experiences Y .

Note that r · γTR
G represents the (possibly group-conditional) rate at which an individual Xi ∈ G who

experiences Y actually reports, while r · γFR
G represents the rate that an individual Xi ∈ G who does not

experience Y reports. Thus, γTR
G and γFR

G represent how much more (or less) a particular group G makes
true or false reports relative to the population average rate. We make the relationships between γTR

G , γFR
G ,

and our quantity of interest IRG, more precise in the following.

Proposition 3.4. Suppose that, for some G, it is determined that µG ≥ βµ0
G for some β > 1. As long as

γTR
G > γFR

G for every G ∈ G, IRG ≥ β Pr[R]−γFR
G

γTR
G −γFR

G

.

Proof of Proposition 3.4. Recall that we have defined µG = Pr[G | R], and µ0
G = Pr[G] is known by As-

sumption 2.1. By Bayes’ rule, we have µG = Pr[G | R] = Pr[G] Pr[R|G]
Pr[R] = µ0

G
Pr[R|G]

r , where randomness is due

to reporting. Now, let us decompose Pr[R | G] by “true” reports (Y = 1) and “false” reports (Y = 0). By
the law of total probability, Pr[R | G] = r ·

(
γTR
G IRG + γFR

G (1− IRG)
)
; more precisely,

1

r
Pr[R | G] = Pr[R | G, Y = 1]Pr[Y | G] + Pr[R | G, Y = 0](1− Pr[Y | G])

= γTR
G IRG + γFR

G (1− IRG)

= γFR
G + IRG(γ

TR
G − γFR

G );

combining this with the Bayes’ rule computation, cancelling the 1
r factor, gives us IRG =

µG
µ0
G

−γFR
G

γTR
G −γFR

G

. The

result follows from the assumption that µG/µ0
G ≥ β.

Proposition 3.4 shows that the exact computation of IRG depends on reporting rates γTR
G and γFR

G .
While these quantities are not directly estimable from reporting data—in fact, estimating reporting rates is
itself a distinct research challenge (e.g., Liu et al. [2024])—these results can nevertheless guide qualitative
interpretation of how severe IRG is.

For example, suppose a test is run for β = 1.5. Suppose that G overreports relative to the population
average, with γFR

G = Pr[R] (that is, G falsely reports at the same rate at the population average, which
includes both true and false reports) and γTR

G = 2Pr[R]. Under these (generous) assumptions, we have
that IRG = 0.5, an extremely high incidence rate for any application—regardless of incidence rates for other
groups. Alternatively, suppose reporting rates did not vary by group. Then, if G is flagged at β > 1,

there must be some G′ with IRG − IRG′ ≥ (β − 1) Pr[R]

γTR
G −γFR

G

. If it is further assumed that γFR
G = 0, then

IRG − IRG′ ≥ β − 1.
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4 Identifying Subgroups with High Reporting Overrepresentation

How might the test proposed in Equation (1) be carried out in practice, with reports arriving over time? At a
high level, our algorithms follow the protocol outlined in Algorithm 1. For each group G, we maintain a test
statistic ωG

t that is updated as reports Xt are received over time. At each time t, each of these test statistics
are compared to a threshold θt(α), which depends on the test level α; the null hypothesis HG

0 for group G
is rejected if ωG

t > θt(α). For ease of exposition, Algorithm 1 is written so that groups corresponding to
rejected nulls are collected in a set GFlag; in practice, a database administrator may choose to stop the test
entirely as soon as one harmed group has been found.

In this section, we provide two algorithms that instantiate this sequential hypothesis test. In Section
4.1, we give a simple sequential Z-test-inspired approach which leverages a finite-time Law of the Iterated
Logarithm. Section 4.2 presents a more complicated algorithm that uses recent developments in anytime-valid
inference. The main differences in each algorithm lie in how they implement Lines 1 and 6 of Algorithm
1—that is, how test statistics and thresholds are computed. For both, handling for multiple hypothesis
testing across groups is handled by a simple Bonferroni correction.

Algorithm 1: General protocol for testing overrepresentation

Input: Set of groups G; base preponderances {µ0
G}G∈G ; test level α; relative strength β

1 Initialize test statistic ωG
0 for every G ∈ G and compute threshold θ0(α);

2 Initialize set of rejected nulls (flagged groups) GFlag := ∅;
3 for t = 1, 2, . . . do
4 See Xt;
5 for G ∈ G do
6 Update test statistic ωG

t and compute threshold θt(α);

7 if ωG
t ≥ θt(α) then

8 Add G to GFlag and take requisite action for G, if applicable.

4.1 Sequential Z-test

One simple observation that arises from the model presented in Section 2 is that if reports are arriving
according to some underlying distribution—that is, for every group G, there is an underlying µG from which
the sequence of reports Xt is drawn—then one might expect to be able to use concentration as a tool to
conduct this test, since as time passes, the fraction of reports within the database from group G should
converge to the true mean µG. We refer to this style of approach as a sequential Z-test, as it relies on
measuring deviation from the mean.

Updating the test statistic ωG
t . Given this intuition, the test statistic itself is a simple count of the

number of times a report from each group has been seen, i.e. (with ωG
0 initialized at 0),

ωG
t ← ωG

t−1 + 1[Xt ∈ G]. (2)

Setting the threshold θt(α). Given the way that ωG
t accumulates evidence, one natural way to construct

the threshold involves plus a correction term for both sample complexity and repeated testing over time.
With C set to either

√
βµ0

G(1− βµ0
G) or 1/2, the threshold (which includes a Bonferroni correction) is

θt(α) := t · βµ0
G + C

√
3

2

√
1

2
ln

(
|G| (2 + log2(t))

2

α

)
. (3)

Theoretical guarantees. Our first guarantee is a bound on the probability that any group is incorrectly
flagged. Formally, we have the following theorem:
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Theorem 4.1 (Validity). Running Algorithm 1 with θt(α) as in Equation (3), setting C = 1/2, and ωG
t

updated as in Equations (2), guarantees that the probability that GFlag will ever contain a group G where its
corresponding null HG

0 is true is at most α, i.e.

Pr
[
∃t : ∃G ∈ GFlag s.t. HG

0 holds
]
≤ α.

Detailed proofs of this result can be found in Lemma 1 of Jamieson et al. [2014], and Theorems 2 and 6
of Balsubramani [2014]. The choice of C affects the nature of the guarantee: the true, finite-sample anytime-
validity guarantee requires C = 1/2. If instead C =

√
βµ0

G(1− βµ0
G), then, strictly speaking, the guarantee

holds only asymptotically. However, a higher value of C affects stopping time unfavorably, so the asymptotic
approximation can be useful practically.

Notably, however, due to Theorem 3 of Balsubramani [2014], this is not a test of power one. In fact,
there is an unavoidable anticoncentration due to the second term of Equation (3).2

Theorem 4.2 (Power). Let T be the stopping time of Algorithm 1 with ωG
t updated as in Equations (2) and

θt(α) as in Equation (3), with any setting of C. Let ∆G := µG − βµ0
G, ∆max = maxG∈G ∆G. If ∆max > 0,

then, with strict inequality, Pr[T <∞] < 1.

4.2 Betting-style approach

We refer to our second algorithm as a betting-style approach, due to the way we construct our test statistics
[Shafer, 2021, Waudby-Smith and Ramdas, 2024, Chugg et al., 2024, Vovk and Wang, 2021]. We direct the
reader to these references for more detailed technical exposition. The betting-style approach rests on the
key idea that we can pose the problem of rejecting some null hypothesis HG

0 as that of ‘making money’ by
‘betting’ against it. We concretize this test as follows.

Updating the test statistic ωG
t . We let ωG

t be the logarithm of the ‘wealth’ accumulated up to some
time t given a series of bets λ1, . . . , λt ∈ [0, 1/βµ0

G],
3 (where ω0 and λ0 are taken to be equal to 0). This

corresponds to the following update rule for the quantity ωG
t , initializing ωG

0 = 0:

ωG
t ← ωG

t−1 + ln
(
1 + λG

t (1Xt∈G − βµ0
G)
)

(4)

To minimize stopping time, we would like to set λt in a way that maximizes the test statistic ωG
t . Luckily,

the problem of ‘portfolio optimization’ [Cover, 1991] already has been well studied in the online learning
literature [Zinkevich, 2003, Hazan et al., 2016, Cutkosky and Orabona, 2018], and there exists a concrete
rule that ensures the resulting ωG

t is not too far from the best achievable in expectation. This strategy,
called Online Newton Step [Hazan et al., 2007], amounts to the following update for {λt}t≥1:

λG
t+1 ← Proj

[0,1/(βµ0
G)]

(
λG
t +

2

2− ln(3)

zt
1 +

∑
s∈[t] z

2
s

)
. (5)

where we denote zt =
1[Xt ∈ G]− βµ0

G

1 + λG
t (1[Xt ∈ G]− βµ0

G)
, and set λ0 = 1/2.

Setting the threshold θt(α). The way we set ωG
t in Equation (4) ensures that anytime-validity at level

α is preserved if we reject HG
0 as soon as ωG

t > log (1/α). That is, under HG
0 , we have that Pr[∃t : ωG

t >
log(1/α)] ≤ α.4 Adding a Bonferroni correction, this gives θt(α) := log (|G|/α) for all t.

2That said, in practice, this does not appear to be a a problem (see Section 5).
3To interpret this quantity, note that taking λt = 0 means the wealth remains the same regardless of what happens in the

next round. On the other hand, λt = 1/βµ0
G means that if we receive evidence in accordance with the null we lose all the

‘money’, but, if we receive evidence against the null, i.e. Xt ∈ G, we maximally increase ωG
t .

4This follows directly from the prior work referenced at the beginning of this section; at a high level, every sequence
{exp(ωG

t )}t≥1 is a non-negative super-martingale; applying Ville’s inequality provides a validity guarantee directly. exp(ωG
t )

can also be referred to as an e-value [Vovk and Wang, 2021], a measure of evidence against a null hypothesis similar to a p-value.
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Theoretical guarantees. The validity guarantees of this approach are very similar to those for the Z-test
style approach; it is always valid in finite samples.

Theorem 4.3 (Validity). Running Algorithm 1 with θt(α) = log (|G|/α) and ωG
t updated as per Equations (4)

and (5) guarantees that the probability that GFlag will ever contain a group G where its corresponding null
HG

0 is true is at most α, i.e.
Pr
[
∃t : ∃G ∈ GFlag s.t. HG

0 holds
]
≤ α.

Finally, a direct consequence of adapting the analysis of Chugg et al. [2024] is the following theorem
bounding the expected stopping time of our procedure:

Theorem 4.4 (Power). Let T be the stopping time of Algorithm 1 with θt(α) = log (|G|/α) and ωG
t updated

as per Equations (4) and (5). Let ∆G := µG − βµ0
G and ∆max = maxG∈G ∆G. Then, if ∆max > 0, this test

is a test of power one, i.e. Pr[T <∞] = 1. Furthermore,

E[T ] ≤ O
(
log (|G|/α) + log (1/∆2

max)

∆2
max

)
.

Note that the above corresponds to the stopping time guarantee for running the procedure on only the
group with the biggest gap plus a term equal to log (|G|) in the numerator. This means that, in terms of
worst-case guarantee on stopping time, the contribution of the Bonferroni correction is small relative to the
contribution of the test level α and, especially, to the gap ∆max.

5 Real-World Examples

To demonstrate the applicability of our approach, we apply our framework to two real-world datasets.
We begin by showing that Algorithm our approach can correctly (and quickly) identifies that young men
experience myocarditis after the COVID-19 vaccine; then, on mortgage allocation data, we show that we
identify known instances of discrimination under many reasonable reporting models. See Appendix C for
dataset details and further discussion.

5.1 Myocarditis from COVID-19 vaccines

It is by now well-known that COVID-19 vaccines appear to induce elevated risk of myocarditis among young
men [Oster et al., 2022] . While initial suspicions of elevated myocarditis risk relied on case studies, a
more systematic understanding—including the pattern of disproportionate impact on on young men—was
made possible by post-hoc analysis of incident databases. If we had been able to run the hypothesis tests
proposed in the preceding sections on the reports collected in VAERS, would we have correctly identified
this problem—and if so, how quickly?

Concretely, we let Yi be the event that individual i experiences myocarditis after receiving a COVID
vaccine, and run the test with the end-goal of identifying elevated incidence rate Pr[Yi | Xi ∈ G] for group(s)
G corresponding to adolescent men (ages 12-17 and 18-29).

Setting β. For this application, absolute incidence rate (that is, Pr[Y = 1 | G]) is the quantity of interest
to use for determining β. As suggested by Proposition 3.4, setting β requires considering three quantities
of interest: the threshold on an “unacceptable” incidence rate, the relative rates of true reporting γTR

G , and
the relative rates of false reporting γFR

G . Then, we can set β = maxG
(
(γTR

G − γFR
G ) · IR + γFR

G

)
.

We will choose 0 as the threshold on an “unacceptable” incidence rate.5 It is therefore sufficient to
set β = maxG(γ

FR
G ). While this is quantity cannot be determined from report data alone, a conservative

assumption could be that any group erroneously reports at most twice the average reporting rate over the

5One might follow existing practice and use the per-group expected rate of myocarditis to benchmark an unacceptable
incidence rate (e.g. as provided in Table 2 of Oster et al. [2022], which suggests at most 2 cases per million doses). However, in
addition to this expected incidence rate being very small (and, for any practical purposes, being vastly dominated by the other
reporting terms), it also implicitly relies on reports so that the benchmark quantities are r · IR, rather than just IR, and thus
depend on the unknown reporting rate r.
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Table 1: On real historical sequence of myocarditis reports, time to identification of harmed groups. In each cell, we
report the number of total reports to the rejection of the hypothesis corresponding to (M, 18-29) and the number
of total reports corresponding to (M, 12-17). In all tests, the (M, 18-29) group is identified first. ∗Note that for the
asymptotic Z-test, a minimum stopping time of 100 was enforced for the purposes of asymptotic validity.

Asymptotic Z-test∗ Finite-sample Z-test Betting-style test

β = 2.0 101 (M, 18-29); 256 (M, 12-17) 69; 530 61; 241

β = 2.5 101; 302 74; 546 69; 259

β = 3.0 101; 324 111; 612 80; 302

population, with γFR
G = 2.0. If the algorithm is first β = 2.0, stopping and flagging a group very quickly, it

may be natural to re-run the test with increasing values of β, as a higher β corresponds to a more severe
true incidence rate, so we also test β = 2.5 and β = 3.6

Results. We begin by running our algorithms on the actual sequence of reports in chronological order,
as received in VAERS. In particular, we consider Algorithm 1 instantiated with ωG

t updated according to
Equation (2) and θt(α) as in (3) and C = 1/2 (Asymptotic Z-test); with ωG

t updated according to Equation
(2) and θt(α) as in (3) and C =

√
βµ0

G(1− βµ0
G) (Finite-sample Z-test), and with ωG

t updated according to
Equations (4) and (5), and θt(α) ln(|G|/α) (Betting-style test). We run all experiments for α = 0.1. In Table
1, we report the stopping time—that is, the number of reports it takes for the first null to be rejected—of
each algorithm for various values of β.

To explore the robustness of these results, we also run synthetic experiments, permuting the ordering of
reports to get a sense of possible variance in the stopping time. We run 100 random permutations of the
full set of reports. In Figure 1 1, we compare the performance of various algorithms on this set of reporting
data. Each point on these plots reflects the number of trials (out of 100) in which a rejection has occurred
by time t. Figure 1 tracks the number of reports it takes for each algorithm to reject the null hypothesis for
any group—that is, a scenario when the test is stopped and an alarm is raised as soon as one harmed group
is identified. To interpret the figure, the finite-sample z-test (lilt) stopped by time t = 400 in around 45 of
50 trials; in all 50 trials, it stopped by time t = 700. Overall, Figure 1 shows that the asymptotically-valid
sequential z-test (dashed, red) identifies a harmed group the most quickly, but the e-value algorithm (solid,
dark purple) performs very similarly.

Our experimental results suggest that our proposed tests would in fact have been effective in determining
that young men were disproportionately affected by myocarditis. Moreover, though it is difficult to determine
exact timelines and the nature of clinical practice during early phases of the vaccine rollout, it is possible
that such a test could have identified problems using less data—that is, more quickly—than was actually
used for this finding.

5.2 Mortgage Allocations

In 2021, Martinez and Kirchner [2021] found that, based on publicly-released data from the Home Mortgage
Disclosure Act (HMDA), substantial racial disparities in 2019 loan approvals persisted even after controlling
for financial characteristics of applicants—most notably, healthy debt-to-income ratios (DTI). If home loan
applicants had been able to submit reports when they believed they had experienced unfavorable outcomes,
could we have used those reports to discover the discrimination identified by Martinez and Kirchner [2021]—
and if so, how accurately, and how quickly?

Unlike the COVID vaccine case study, we are interested primarily in disparity among applicants with
healthy DTI, even though all loan applicants would have been eligible to submit reports. Concretely, we let
Ai = 0 be the event that a loan is not made to applicant i, and Zi = 1 be the event that applicant i has
a healthy debt-to-income ratio. Then, we let Yi = {Ai = 0, Zi = 1} be the event that individual i has a

6Note that re-using the data here is statistically valid due to the equivalence between one-sided hypothesis testing and
confidence sequences.

9



Figure 1: COVID experiment,
with β = 3, over 100 random
permutations of report database.
Comparison across algorithms of
the number of steps (t) it takes
for each algorithm to reject the
null hypothesis for any group—
that is, stopping time, if the al-
gorithm had been stopped as soon
as one harmed group is identified.
The asymptotically-valid sequen-
tial z-test (dashed, red) identifies a
harmed group the most quickly, but
the e-value algorithm (solid, dark
purple) performs very similarly.

healthy DTI and did not receive a loan, and run the test with the end-goal of identifying groups that have

relatively high rates of loan denials for applicants with healthy DTI, i.e. Pr[Ai=0,Zi=1|Xi∈G]
Pr[Ai=0,Zi=1] .

Reporting models. The existence of verifiable disparities in this dataset allows us to evaluate the efficacy
of our methods under varying models of reporting—that is, whether the groups returned by our algorithms
do in fact reflect groups with high rates of healthy DTI denials, even if it is not the case that every report
Xi corresponds to Yi actually occurring. The dataset gives several levels of financial health with respect to
DTI—in ascending order, “Struggling”, “Unmanageable,” “Manageable,” and “Healthy.” Modeling the idea
that reporting behavior may be related to financial health, we use these categories to simulate four models
for reporting.

(1) Healthy DTI: The (ideal) case where reports only come from individuals with “Healthy” DTI and were
denied a loan.

(2) Correlated: A slightly more realistic case where “Healthy” denials report with probability 0.9, “Man-
ageable” 0.5, “Unmanageable” 0.3, “Struggling” 0.1.

(3) All Denials: All denials submit reports regardless of financial health.

(4) The Anti-Correlated: The (unlikely) case where individuals with worse financial health are more likely
to report, i.e. “Healthy” denials report with probability 0.1, “Manageable” 0.5, “Unmanageable” 0.7,
“Struggling” 0.9.

Setting β. In this application, the quantity of interest is relative risk, so we draw on Proposition 3.2 to
inform our setting of β. We will set our relative risk threshold to be 1.2—that is, we want our algorithm to
raise an alarm when any group experiences event Y 20% more frequently than average over the population.
We test at β = 1.4, reflecting a maximum group-conditional RIR (recall Definition 3.1) of 7/6; β = 1.6, which
corresponds to maxG RIRG ≤ 8/7; and β = 1.8, which corresponds to maxG RIRG ≤ 9/7.

Results. As with the COVID case study, we run all three algorithms discussed in Section 4; we also run
them for all four reporting models discussed above, and for β = {1.4, 1.6, 1.8}. For each combination of
algorithm, reporting model, and β, we again run 100 random permutations, and terminate the algorithm
after 10,000 steps. 7

One important question for this application is the extent to which our tests identify the type of harm we
are interested in, depending on various reporting models: while the algorithms guarantee statistical validity
in terms of overrepresentation (i.e., in terms of whether µG ≥ βµ0

G), they cannot intrinsically guarantee

7Note that since we are simulating reporting, we cannot run any experiment for the true historical sequence of reports, as
we did in Table 1.
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Table 2: Percentage of groups in GFlag where RRG ≥ 1.5, on average over 100 trials, as well as median size of GFlag.
Results are shown for the Asymptotic Z-test, which was allowed to run for 10,000 steps.

Healthy DTI Correlated All Denials Anti-Correlated

β = 1.4 93.7% (|GFlag| ≈ 8) 92.3% (13) 76.1% (20) 59.0% (28)

β = 1.6 88.3% (3) 94.7% (6) 91.1% (10) 78.2% (16)

β = 1.8 72.9% (2) 90.4% (2) 89.6% (3) 85.3% (7)

that reports themselves reflect true harm. With the benefit of hindsight (and access to the full dataset),
we are able to calculate “ground truth” incidence rates. It turns out that a relative risk of 1.5 corresponds
approximately to the 75th percentile of Pr[Yi | G], and is comprised of entirely Black or Latino groups (across
age and gender). On the other hand, a relative risk of 1.2 is actually around the 50th percentile—that is, half
of the 115 groups have a (true) relative risk that should have been sufficiently high to trigger the alarm. This
discrepancy can be explained entirely by the relative sizes of each group; the larger groups, which correspond
to majority or more privileged groups, also have relative risk that is lower than average.

In Table 2, we show results for the asymptotically-valid Z-test for a variety of reporting models. We
highlight two notable phenomena here. First, when β = 1.4—which means that the test itself should provide
no guarantees about identifying groups with RRG > 1.5, even if reporting across groups exactly equal—the
test still identifies a GFlag that is comprised mostly of groups that do experience a true RRG > 1.5; this
is consistent with the theory in that the more severely-impacted groups will be identified sooner. On the
other hand, though there are around 25 groups with RRG > 1.5, there are far fewer than 25 groups in GFlag
regardless of the β at which the test was run. The likely explanation for this is that when groups themselves
are very small, it is more difficult to gather sufficient samples to determine that a gap exists; and it is possible
that running the test for more than 10,000 steps would have identified them.

6 Discussion

This work is an initial approach to using incident databases for post-deployment auditing; we believe there
is a rich range of future work that develops the ideas in this paper, both technically and conceptually.

On the statistical and algorithmic side, because our framework allows for plugging in any existing se-
quential test, new methods that control for multiple hypothesis testing both over time and over the number
of distinct hypotheses would be directly beneficial for this application. On the other hand, one might hope
for online methods that do not require pre-specifying hypotheses and instead develops them sequentially in
a quasi-unsupervised fashion, or that improve guarantees by exploiting relationships across hypotheses, as
has proven useful in multi-objective learning.

More conceptually, while the application examples in Section 5 are somewhat stylized, they demonstrate
that incident databases can be promising starting points for new types of post-deployment evaluation. For
incident databases to be practically useful, there are a plethora of additional considerations to incorporate
from a variety of disciplines. For instance, if a reporting system was available, how would individuals engage
with them in theory, and in practice? To what extent do, and should, individual incentives affect the
database, and how it is designed? How can the result of a test (a null hypothesis rejection) be contextualized
by existing and emerging legal frameworks?

To the best of our knowledge, we are the first to propose individual incident reporting to identify patterns
of disproportionate harm in interactions with a particular system; more generally, however, one might imagine
that similar reporting systems can be developed to provide insights about concerns beyond fairness. In fact,
while the framework introduced in our work is not intrinsically about algorithmic deployments, it is one
way to operationalize recent regulatory movement in AI policy towards allowing for or requiring individual
reports. Any way to make such reports actionable at large scale must, to some extent, aggregate of individual
reports to develop more systematic evaluations of an underlying algorithm. We therefore see our work as
one step towards giving voice to individual experiences—and towards having them make a difference.
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A Additional Related Work

A.1 Technical discussions

Relationship to Chugg et al. [2024] Perhaps the most closely related work is that of Chugg et al.
[2024], who propose applying a sequential hypothesis test with the explicit goal of quickly identifying bias
in deployed systems in real time; they also draw from the testing-by-betting framework, and our e-value
algorithm utilizes the betting strategy (i.e., λ updates via ONS) given in their work. However, we propose
fundamentally different tests—their test is of equality of means across different groups, while ours compares
within groups—leading to a few key differences. Perhaps most significantly, their test assumes access to one
sample from each group at each timestep; the test must wait until a new sample arrives from each group.
This naturally extends the time horizon, possibly dramatically, when groups are imbalanced. More precisely,
in expectation, each timestep would require waiting for

∑
G∈G

1
µG

samples, which is lower bounded by |G|2.8
Additionally, the method assumes that the labels and predictions of samples X are known. Our test, on
the other hand, is designed explicitly to bypass the fundamental problem that, in many cases, labels (or
predictions) are unknown.

Relationship to Adam et al. [2024] The work of Adam et al. [2024] provides a method for early stopping
in (sequential) RCTs in the case that there exists some subgroup with a negative (average) treatment effect.
From an algorithmic point of view, this is a very similar problem setup: we have a problem where data
arrives sequentially, and the goal is to stop early if disparate harm is detected. However, their application
context is quite different; other key differences include that algorithm proceeds in batch-like phases, and
provide primarily asymptotic theoretical guarantees.

A.2 Policy and application context

Comparison to current practice in VAERS. As outlined in Shimabukuro et al. [2015], reports from
the Vaccine Adverse Event Reporting System (VAERS) are used to “detect vaccine safety signals,” but not
to rigorously determine safety. VAERS functions as a means to continuously monitor vaccines that are
licensed in the U.S., with emphasis on vaccines that are high use (e.g. flu), newly-approved vaccines, and
new rollout policies/recommendations for existing vaccines.

The core statistical component of VAERS data analysis relies primarily on descriptive analysis and
comparison to historical trends, specifically via disproportionality analysis. In particular, VAERS uses a

“proportional reporting ratio” (PRR), defined PRR =
ViEj/(ViEj+ViEx)
VxEj/(VxEj+VxEx)

, where ViEj indicates the number

of reports of adverse event j for vaccine i, and VxEx indicates the number of reports of any other adverse
event for any other vaccine. Qualitatively, the numerator captures how frequent event Ej was relative to
all adverse reports for vaccine Vi, while the denominator captures how frequently event Ej is reported for
all other vaccines Vx. PRR therefore represent how much more event Ej tends to happen for the particular
vaccine Vi, as compared to other vaccines.

B Practical considerations

We conclude this section with a brief discussion of modeling decisions that are necessary for practical imple-
mentations of our proposals.

Choosing G. In our experiments in Section 5, we choose to define subgroups as all possible combinations
of available demographic characteristics. That said, a practitioner may seek to define G more carefully in
accordance with their application. For instance, if the goal is to illustrate discrimination in a legal sense, G
should be defined with respect to (protected) demographic features, rather than arbitrary combinations of
covariates. On the other hand, G could include which batch of a medication an individual received; our tests
could then help identify whether some batches were improperly manufactured.

8Technically the sum is multiplied by maxG µG, i.e. scaled by frequency relative to the biggest group.
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Baseline rates {µ0
G}G∈G. A natural question that arises from the modeling in this section is how {µ0

G}G∈G
can be determined, or if Assumption 2.1 is strictly necessary. Practically speaking, these base preponderances
may be estimated, possibly with some amount of noise. However, for ease of exposition, we assume we
have access to the true, underlying values of {µ0

G}G∈G , as the estimation problem can be addressed with
standard techniques and is not core to our contribution. Perhaps more significantly, in practice these baseline
preponderances may change over time (e.g. if some subgroups increased uptake of a vaccine, or applied for
loans more frequently, over time).

Note that testing against base preponderances of the reference population (i.e., to compare µG to µ0
G) is

a new test proposed by this work, and the analysis in Sections 3.1 and 3.2 is specific to this test. Existing
approaches to monitoring in incident databases compare to different baselines, most commonly the historical
overall incidence rate for the specific symptom, sometimes by subgroup [Shimabukuro et al., 2015, Kulldorff
et al., 2011, Oster et al., 2022]. These baselines could, in principle, be plugged into the algorithms in Section
4, but new analysis for (possibly group-varying) reporting rates would be necessary to draw inferences about
analogous quantities of interest (e.g., RR or IR), as current approaches do not generally consider reporting
behavior. In contrast, our modeling allows us to identify what quantities may affect the true incidence rate
even if they may be unmeasurable.

Setting β. Finally, to run the test proposed in Equation (1), it is necessary to determine how to set the
value of β. As we will see in Section 4, when β is set too high, then the test may never identify problematic
groups, or identify them more slowly; on the other hand, as is clear from the previous subsections, rejecting
the null hypothesis for a smaller β requires more stringent assumptions on reporting behavior. Thus, we
suggest a procedure to set β as follows: (1) choose a relative risk or incidence rate threshold where it would be
problematic for any group if RRG or IRG surpassed that threshold; (2) make the corresponding assumptions
about reporting behavior; (3) use these quantities to compute a reasonable β. We give some example
computations in Section 5. Due to an equivalence between hypothesis testing and confidence intervals, it is
statistically valid to rerun tests with different βs once data collection has begun. Thus, it may be prudent
to begin by setting the lowest β that reporting assumptions would allow; then, if the tests appear to be
stopping very quickly, to re-run them at higher βs, which would allow a practitioner to get a better sense of
the severity of the harm.

C Additional Experimental Details

C.1 Additional information on VAERS experiments

Data sources. The Vaccine Adverse Event Reporting System (VAERS) is a national adverse event incident
database for U.S.-licensed vaccines, co-managed by the Centers for Disease Control and Prevention (CDC)
and the U.S. Food and Drug Administration (FDA) Chen et al. [1994], Shimabukuro et al. [2015]. For this
case study, we focus on reports of myocarditis after receiving a COVID-19 vaccine; we thus filter the set
of publicly-available reports from VAERS accordingly. To determine per-demographic base rates, i.e. to
compute {µ0

G}G∈G , we utilize VaxView, a government dataset tracking national vaccine coverage (publicly
accessible here).

Defining G. For this application, we consider (intersections of) sex and age buckets to be the subgroups
of interest. In particular, age buckets are discretized into 0-4, 5-11, 12-17, 18-29, 30-39, 40-49, 50-64, 65-
74, and 75+; the sex categories represented in the data are female, male, and unknown. In total, after
removing groups for which no vaccines were known to have been given, G contains 29 total groups. While
in principle it would have been interesting to also consider race/ethnicity, we are limited by the availability
(and granularity) of the data given in VaxView.
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C.2 Additional information on HMDA experiments

Data sources. We use the data (and preprocessing code) of Martinez and Kirchner [2021], which uses
2019 data from the HMDA.9 The analysis of Martinez and Kirchner [2021] used the full year of data from
2019, which included over 183k denials.

Defining G. While Martinez and Kirchner [2021] analyzed disparities with respect to race, we define
groups as all possible intersections of demographic features across gender, race, and age. The available race
categories include Native, Asian, Black, Pacific Islander, White, and Latino; sex categories include female,
male, and unknown/nonbinary; and age categories include <25, 25-34, 35-44, 45-54, 55-64, and 65+. In
total, after removing groups which comprise less than 0.1% of all loan applicants, G contains 115 groups.

9The Consumer Financial Protection Bureau (CFPB) collects and publishes this data from financial institutions annually,
with a two-year lag; the report (and our work) uses 2019 data which is finalized as of Dec. 31, 2022. The most recent year for
which data is available is 2022, though it is available for edits through 2025.
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